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The volatile congener analysis of 52 commercialized whiskeys (24 samples of single malt Scotch
whiskey, 18 samples of bourbon whiskey, and 10 samples of Irish whiskey) was carried out by gas
chromatography/mass spectrometry after liquid-liquid extraction with dichloromethane. Pattern
recognition procedures were applied for discrimination of different whiskey categories. Multivariate
data analysis includes linear discriminant analysis (LDA), k nearest neighbors (KNN), soft independent
modeling of class analogy (SIMCA), procrustes discriminant analysis (PDA), and artificial neural
networks techniques involving multilayer perceptrons (MLP) and probabilistic neural networks (PNN).
Classification rules were validated by considering the number of false positives (FPs) and false
negatives (FNs) of each class associated to the prediction set. Artificial neural networks led to the
best results because of their intrinsic nonlinear features. Both techniques, MLP and PNN, gave zero
FPs and zero FNs for all of the categories. KNN is a nonparametric method that also provides zero
FPs and FNs for every class but only when selecting K ) 3 neighbors. PDA produced good results
also (zero FPs and FNs always) but only by selecting nine principal components for class modeling.
LDA shows a lesser classification performance, because of the building of linear frontiers between
classes that does not apply in many real situations. LDA led to one FP for bourbons and one FN for
scotches. The worse results were obtained with SIMCA, which gave a higher number of FPs (five for
both scotches and bourbons) and FNs (six for scotchs and two for bourbons). The possible cause of
these findings is the strong influence of class inhomogeneities on the SIMCA performance. It is
remarkable that in any case, all of the methodologies lead to zero FPs and FNs for the Irish whiskeys.
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INTRODUCTION

Discrimination issues are of utmost importance for a wide
variety of products including foods and beverages according to
the requirements of countries’ laws. Within the realm of
alcoholic beverages, the consumption of spirits in the world as
appetizers, digestives, and now, especially, as long drinks is
increasing. From the aqua vitae of Arnaldo de Vilanova and
the aqua ardens of Raimon Llull (1) until the most recent
products, distilled alcoholic beverages have been present
throughout time in all towns and societies of the world.
Accordingly, discrimination and authentication procedures have
been applied to spirituous beverages by taking into account their
elaborate features. Besides, considering that a majority of the
compounds selected as descriptors for discrimination purposes
are volatile in nature, the analytical technique more prone to

volatile congener determination is gas chromatography (GC).
Thus, GC has been suitably used for discrimination purposes
of several kinds of spirits and liquors such as gins (2), brandies
and cognacs (3,4), rums (5), tequilas (6), and whiskeys (7-9).
Our research, now in progress, is focused on whiskey discrimi-
nation, especially to distinguish among single malt Scotch
whiskey, bourbon whiskey, and Irish whiskey. Whiskey was
legally defined in the European Community Council Regulation
No. 1576/89 (10). Scotch whiskey is a distilled spirit made in
Scotland. (Generally, although not always, the Scottish,
Japanese, and Canadian spirits are spelled “whisky”; the Irish
and American ones are spelled “whiskey”.) The name whiskey
is a transformation of the word uisquebaugh, itself a transforma-
tion of the Scottish Gaelic uisge beatha, spelled uisce beatha in
Irish Gaelic, literally meaning the “water of life”. In North
America, the abbreviated term scotch is usually used for Scotch
whiskey. In England, Scotland, and Wales, the term whiskey
almost always refers to Scotch whiskey, and the term scotch is
rarely used by itself (11). To legally be called Scotch whiskey,
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the spirit must conform to the standards of the Scotch Whiskey
Act 1988 (12). There are mainly two distinct types of Scotch
whiskey, malt whiskey and grain whiskey, but most of the well-
known brands of Scotch whiskey are blended from many
individual malt and grain whiskeys.

Bourbon is an American form of whiskey, made from at least
51% but not more than 79% corn or maize (typically about 70%)
with the remainder being wheat, rye, and malted barley. It is
distilled to no more than 160 (U.S.) proof and aged in new
charred white oak barrels for at least 2 years (usually much
longer). In this way, it is similar to Scotch whiskey, which is
also aged in charred barrels. Most of the time, it is then adjusted
to 80-100 proof and bottled, although some are bottled at “cask
strength” (12). Legal definitions are in agreement with the Code
of Federal Regulations (13).

Irish whiskey is made either from malted barley or from
mixtures of malted and unmalted barley and other cereals but
with not less than 25% of malted barley. The malt is dried in
closed kilns, which avoids the smoky taste and ensures a smooth
and natural flavor. In Ireland, whiskey is obtained after three
separate distillations. First, a pot still distillate called “low wines”
is obtained. This full-flavored product is then distilled in another
pot still. The resulting product, called “feints”, requires one
further distillation that is carried out in a patent Coffey still.
According to this triple distillation, a final spirit of light and
delicate character is obtained. The product is stored at not more
than 63% alcohol (v/v) in oak casks, some of which have been
used previously for sherry, for a period of 5 years or more (14-
16). The use of a mixture of partially malted barley, the absence
of peat fire smoking, and the application of a triple distillation
procedure confer to Irish whiskey peculiar features. Irish
whiskey distilleries that comply with this typical elaboration
joined together in 1966 to constitute the Midleton Centre in
County Cork. Aside from the Midleton Centre, Old Bushmill
distilleries, located in North Ireland, produces its own whiskey
by following a different Scottish recipe (14) using pure malted
barley, discontinuous distillation using three pot stills, and
maturation in sherry and American oak casks and in port wine
pipes. The result is a kind of single malt Scotch whiskey.

As stated above, the aim of the present paper is to find suitable
discrimination rules to differentiate Irish whiskey, single malt
Scotch whiskey (scotch), and bourbon whiskey. For these
purposes, GC procedures coupled with mass spectrometry
detection (GC/MS) are applied because of their powerful
performance for discriminating distilled liquors (17). The use
of fusel oils (1-propanol, 2-methyl-1-propanol, 2-methyl-1-
butanol, and 3-methyl-1-butanol) as chemical descriptors seems
to be of interest for discrimination (8,18). However, for
authentication purposes, it is more advisable to select a higher
number of chemical descriptors, such as components (or
congeners) formed in the elaboration process and maturation
in casks. Whiskey is a very complex product, with several
hundreds of congeners including alcohols, aldehydes, acids,
esters, phenols, and carbonyl-, nitrogen-, and sulfur-containing
products. Aylott et al. (7) have pointed out that higher alcohol
congener analysis provides a valuable method for checking
whiskey brand authenticity, but further confirmatory data are
obtained by reference to cask extractive and volatile phenolic
congeners. Accordingly, we have performed GC/MS congener
analysis on a number of samples of the three different classes
of whiskey mentioned above by direct injection of dichlo-
romethane extracts. The chemical descriptors are 12 congeners
suitably selected as will be described later. The discrimination
of the selected whiskey categories is achieved by applying

supervised learning pattern recognition procedures to the results
(congener analysis). Since early works until the present time,
linear discriminant analysis (LDA) (19) and canonical variate
analysis (CVA) (20) have been the tools of the trade for
classification purposes. CVA attempts to find linear combina-
tions of variables from each set that exhibit maximum correla-
tion. These may be referred to as canonical variates, and data
can be displayed as a scatterplot of one against the other. The
problem of maximizing the correlation can be formulated as an
eigenanalysis problem with the largest eigenvalue providing the
maximized correlation and the eigenvectors giving the canonical
variates. Loadings of original variables in the canonical variates
and cumulative proportions of eigenvlaues are interpreted, partly
by analogy with principal component analysis (PCA) (21). Note
that if one set of variables are dummy variables giving group
indicators, then CVA is mathematically identical to LDA. Only
Aylott et al. (7) apply it for whiskey authentication. However,
these methods cannot give good results when (i) class borders
are of a nonlinear nature, due to the intrinsically linear features
of discrimination surfaces in LDA/CVA, and (ii) the descriptors
are non-Gaussian distributed. Accordingly, to find the most
suitable procedures for discrimination, besides LDA, we call
on other different chemometric techniques. Thus, six supervised
learning pattern recognition procedures were applied as fol-
lows: LDA, K-nearest neighbors (KNN) (22), procrustes
discriminant analysis (PDA) (23-25), soft independent model-
ing of class analogy (SIMCA) (26), and methods based on
artificial neural networks. These selected methods are very
different in nature. The majority are hard-modeling methods
against SIMCA, a class-modeled technique (27). KNN and
artificial neural networks are nonparametric methods, the best
choice when the descriptors are not normally distributed.
Moreover, parametric methods such as LDA, SIMCA, and PDA
work well when the classes present inner similarities and are
well-separated from each other (minimization of the ratio of
within classes sum of squares and between classes sum of
squares) (28). Thus, when dealing with data exhibiting nonlinear
class structure, these methods are not a good choice; instead,
artificial neural networks are the best selection. Multilayer
perceptrons trained by back-propagation (MLP) are the best
known and most commonly applied artificial neural networks
for classification purposes (29-32). Nevertheless, another kind
of artificial neural network is the called probabilistic neural
network (PNN) (33,34), scarcely employed for discrimination
purposes and not yet applied in the field of authentication of
alcoholic beverages. This procedure conjugates the neural
network features and the bayesian estimation of posterior
probabilities for evaluating class membership. An outline of each
classification procedure, emphasizing PNN, will be given in the
Statistical Analysis section.

A preliminary chemometric treatment consists of implement-
ing a PCA on the data matrix for both dimensionality reduction
and to select the most promising chemical descriptors as the
chemical variables most contributing to the two first principal
components (PCs), in our case 12 congeners.

MATERIALS AND METHODS

Standards and Samples.Dichloromethane (99.9%) (Romil, Bar-
celona, Spain) and acenaphten (99.0%) (Fluka, Buchs, Switzerland)
were of analytical quality. A solution of 0.005% acenaphten in
dichloromethane was used as an internal standard. Fifty-two com-
mercially available whiskey samples (bottles) were obtained from retail
liquor stores. They consisted of 10 Irish whiskeys (class I), 18 bourbon
whiskeys (class B), and 24 single malt Scotch whiskeys (class S). An
identification code was assigned to each sample: Scotch whiskeys were
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labeled from 1S to 24S; bourbons were labeled from 25B to 42B, and
Irish whiskeys were labeled from 43I to 52I. The bottles, once opened,
were stored in a cupboard at room temperature. Subsampling and
analyses were carried out within a 6 month interval.

Chromatographic Equipment and Conditions.A Fisons GC 8000
gas chromatograph coupled to a Fisons Trio 1000 mass spectrometer
(Fisons Instrument, Valencia, CA) and fitted with a J&W fused silica
capillary column (J&W Scientific, Folsom, CA) of 30 m× 0.32 mm
coated with a 1.8µm film of DB-624 (86% dimethylsilicon and 14%
phenylsilicon) stationary phase was used. Chromatographic conditions
were adapted from Headley and Hardy (35). The oven was operated in
programmed temperature mode: initial temperature, 45°C for 5 min;
program rate, 8°C/min; final temperature, 240°C; and acquisition time,
30 min. Helium was used as the carrier gas at a 1.5 mL/min flow rate
through the column with a 1:70 split ratio, an injector temperature of
240 °C, and an injection volume of 1µL.

The mass spectrometer (quadrupole) was operated in EI mode at 70
eV. The GC/MS interface was held at 250°C, and the ionization source
was held at 200°C. A scan mode in the mass/charge range of 20-250
Da with a scan time of 0.90 and an interscan time of 0.01 s was used.
Data acquisition began after a solvent delay of 6.6 min.

Sample Treatment.The congeners to be quantitated were precon-
centrated by liquid-liquid extraction: Three milliliters of whiskey was
poured in a vial and was treated with 1 mL of dichloromethane
containing acenaphten (0.005% as internal standard). The vial was
shaken for 30 s, and then, 1µL of dichlorometane phase was injected
in the chromatograph.

Data Acquisition. Because the aim of this work was the discrimina-
tion of whiskeys by using the volatile congeners as descriptors rather
than the analysis of such congeners, instead of evaluating the concentra-
tion of each compound in the whiskey, its relative amount was
considered. The relative amount of each congener was taken as the
height ratio of the analyte peak and the internal standard (acenaphten)
peak. Accordingly, no calibration standards were used.

STATISTICAL ANALYSIS

Multivariate analysis was performed with a number of
packages. LDA and artificial neural networks algorithms were
carried out by using the STATISTICA package (36) fitted with
the neural network module. SIMCA P9 (37) was utilized for
SIMCA classification. PDA was performed by using the Holmes
program (23,24). KNN classification was achieved with a
homemade program written in QuickBasic.

To obtain suitable classification rules for assigning categories
to whiskey samples, supervised learning pattern recognition
methods were applied. For validation purposes, the whole data
set is then split randomly into two sets, the training and the
evaluation set, each containing about 50% samples of every
class. Once the classification rule is developed, some workers
consider as validation parameters the recalling efficiency (rate
of training samples correctly classified by the rule) and,
especially, the prediction ability (rate of evaluation samples
correctly classified by the rule). However, these parameters
could be misleading because they do not consider the number
of false positives (FPs) and false negatives (FNs) for each class.
These two concepts provide a deep knowledge of the classes’
space. Accordingly, it seems to be more advisable to use the
terms sensitivity (SENS) and specificity (SPEC) (23, 24) for
validating the decision rule. The SENS of a class corresponds
to the rate of evaluation objects belonging to the class that are
correctly classified, and the SPEC of a class corresponds to the
rate of evaluation objects not belonging to the class that are
correctly considered as belonging to the other classes. This may
be explained in terms of the first and second kind of risks
associated with prediction. The first kind of errors (R) corre-
sponds to the probability of erroneously rejecting a member of
the class as a nonmember (rate of FN). The second kind of errors

(â) corresponds to the probability of erroneously classifying a
nonmember of the class as a member (rate of FP). Accordingly,
for a given class A and settingnA as the number of members
of class A,njA as the number of nonmembers of class A,〈nA〉
as the number of members of class A correctly classified as
belonging to class A, and〈njA〉 as the number of nonmembers
of class A classified as not belonging to class A, we have

Values close to unity for both concepts imply both high SENS
and SPEC. The supervised learning pattern recognition tech-
niques utilized in this work for classification purposes are
presented in the following.

KNN. KNN is a nonparametric method that classifies a test
sample according to the class of the majority of its K-nearest
neighbors in the training set, by using the Euclidean distance
as a similarity measurement (22).

LDA. LDA is a linear and parametric method with hard-
modeling features (19). Discriminant functions are obtained as
a linear combination of descriptors that maximize theF-ratio
of between classes sum of squares and within classes sum of
squares. If we havep descriptors andg classes, the number of
uncorrelated discriminant functions is eitherp or g - 1,
whichever is smaller. In this discriminant space, the classes are
separated by decision hyperplanes. Evaluation samples are
classified according to the proximity to these hyperplanes,
according to the minimum Mahalanobis distance rule, or from
the estimation of an a posteriori probability of class membership
using the Bayes estimation.

SIMCA. SIMCA is a parametric method with soft-modeling
characteristics (26). The basic idea is the construction of a PC
model for each class separately in the training set. The
perpendicular distance of any evaluation sample (considered as
a vector) to the hyperplane defined by the eigenvectors of the
PC-modeled class is used for classification purposes.

PDA. This method is a parametric and linear one (23-25),
where a PCA of the training set is carried out and the scores
are transformed via a procrustes transformation into the true
target matrix of class membership (constructed with ones and
zeros: scotches are 100, bourbons are 010, and Irish whiskeys
are 001). Procrustes transformation is a nonorthogonal oblique
transformation involving rotation, translation, and stretch of the
score matrix of each class. From the training set and the class
membership matrix, the procrustes matrix is obtained and then
it is used for predicting the class membership of the evaluation
set.

MLP. Artificial neural networks such as feed forward MLP
trained by back-propagation of errors are very efficient tools
for classification (29-32). The MLP consists of formal neurons
and connections (weights) between them. The neurons are
commonly arranged in three layers: an input layer, one hidden
layer (sometimes plus a bias neuron), and an output layer
according to an architecture as depicted inFigure 1. The
connections are unidirectional from the input to the output.
Adjacent layers are fully connected, and no connections between
neurons within the same layer exist. A formal neuron sums up
incoming signals, multiplied by the connection weights, subtracts
a threshold value (called bias), and calculates output signals by
using a transfer function. Input neurons simply distribute the

SENS)
〈nA〉
nA

) 1 - R ) 1 - FN
nA

SPEC)
〈njA〉
njA

) 1 - â ) 1 - FP
njA

(1)
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elements of the data matrix row to the hidden layer neurons
without any further computation. Hidden layer neurons com-
monly have a sigmoidal transfer function:

This limits the neuron’s output signal to values between 0 and
1. In addition, output neurons usually have also a sigmoidal
transfer function. Training samples are taken at random. After
each input, all of the weights are reevaluated according to the
called “δ rule”. In the back-propagation scheme, each time all
of the training samples pass through the network, it is called
an iteration cycle or epoch. An important remark for validation
purposes concerning the neural network for avoiding overtrain-
ing is the use of an additional monitoring set (aside from the
training and evaluation sets) to stop the learning process at the
suitable number of epochs to avoid the learning of idiosyncrasies
of the training samples that may lead to overfitting (38).

PNN. PNN is another important classification procedure
based on feed forward artificial neural networks without back-
propagation that implements a Bayesian decision strategy (33,
34). Let Q equal the number of classes in the training set,
namely, C1, C2, ..., CQ; and let n1, n2, ..., nQ equal the
corresponding number of pattern vectors that belongs to the
aforementioned classes. The prior probability for that a given
pattern vectorx belongs to classCK can be estimated from
Laplace’s rule:

However, if we know the componentsx1, x2, ..., xp, this
information can be added to the network and the posterior
probability can be calculated by using Bayes’ theorem (39):

P refers to the probability andp refers to the probability density
function (PDF). Thus,p(x/CK)is the conditional PDF of the
pattern vector once it belongs to classCK. p(x) is the PDF of
pattern vectors and plays the role of a scale normalization
factor. The posterior probabilityP(CK/x) is the probability that
the pattern belongs to classCK once their components are
known. This probability can be evaluated by choosing the class

having the high posterior value:

Taking into account thatp(x) is a normalization factor, we can
write

The estimation of conditional PDF for every class can be easily
done by applying the modified Parzen’s estimator (40) that is
the activation function of PNN and acts as a multivariate
Gaussian operator:

xj andxij are the components of any pattern vectorx and of the
pattern vectorxi

(k) belonging to classK. σK is the called
smoothing factor (41), which is optimized during training.

PNNs are arranged into four layers: the input layer, pattern
layer, summation layer, and decision layer.Figure 2 shows the
corresponding architecture. The input layer is used to store the
new samples of the validation set. Pattern vectors of the training
set are used to optimize the smoothing factor in the training
step (42). The pattern layer contains as many neurons as pattern
vectors of the training set grouped by classes. PNN training is
accomplished by simply copying each pattern in the training
set to the neurons of the pattern layer. The summation layer
consists of one neuron for each class and sums the outputs from
all pattern neurons. This gives a measure of the posterior
probability density function for each class when an input vector
is processed. The decision layer consists of one neuron that
searches for the maximum posterior PDF and assigns to the
input vector the class with the highest probability.

RESULTS AND DISCUSSION

Congener quantitation in whiskey samples has been carried
out, as indicated above, by GC/MS. Chromatographic peaks
have been identified by using the NIST library of mass spectra
(7) with the Lab-Base software (43). Typical chromatograms
obtained for Scotch, bourbon, and Irish whiskeys are depicted
in Figures 3-5, respectively.

Figure 1. General architecture of a three layer MLP with bias.

f(input) ) 1
1 + exp(-input)

(2)

P(CK) )
nK

∑
j)1

Q

nj

(3)

P(Ck/x) )
p(x/CK) P(CK)

p(x)
(4)

Figure 2. Architecture of a typical PNN.
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Figure 3. Chromatogram of a Scotch sample zooming at the region of analytical interest. The internal standard peak has a retention time of 27.3 min.

Figure 4. Chromatogram of a Bourbon sample zooming at the region of analytical interest. The internal standard peak has a retention time of 27.4 min.
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Accordingly, 28 congeners were identified in the different
processed whiskey samples. Not all of these congeners can be
detected in every sample. As can be observed in chromatograms,
different chemical profiles are found for the three whiskey
classes, and some congeners are specific compounds for a given
class of whiskey, whereas other congeners can be detected in
any kind of whiskey. Those congeners with high discriminating
power are considered as descriptors or features of the system.
To ascertain whether any congener by itself could distinguish
among the three classes of whiskeys, a feature selection was
made by performing a PCA of cases and retaining the congeners
with higher contributions to the first PCs. Thus, the entire data
set was subjected to eigenanalysis. The data matrix has 52 rows
(whiskey samples) and 28 columns (the relative amounts of the
selected chemical descriptors). PCA leads to six significant PCs,
validated according to the Kaiser’s criterion (44), which
accounted for 78.6% variance. The features most contributing
to the two first PCs were selected as suitable descriptors, namely,
1,1-diethoxybutane, ethyl exanoate, ethyl octanoate, heptanoic
acid, ethyl decanoate, decanoic acid, ethyl dodecanoate, dode-
canoic acid, hexadecanol, propanoic acid, ethyl formate, and
4-hydroxy-e-methoxy-benzaldehyde. Accordingly, the final data
matrix has 52 rows and 12 columns. The results obtained for
each classification procedure are shown in the following.

KNN. The optimum number leading to a minimum of
misclassification isK ) 3, with FN ) 0 and FP) 0 for all
classes.

LDA. Figure 6 shows the discriminant scatterplot corre-
sponding to the whiskey samples. The scores were estimated
using the selected variables on the training set (closed symbols)
and used in the projection to the evaluaation set (open symbols).
As can be observed, some class overlapping appears that reflects
the nonsuitability of linear frontiers between categories. In our
case and using the Bayesian estimation, the results were as
follows: scotches, FP) 0 and FN) 1; bourbons, FP) 1 and
FN ) 0; and Irish whiskeys, FP) 0 and FN) 0.

SIMCA. By applying the SIMCA P9 software, the following
results were obtained for each class: scotches (model with six
PCs), FP) 5 and FN) 6; bourbons (model with one PC), FP
) 5 and FN) 2; and Irish whiskey (model with two PCs), FP
) FN ) 0. The poor results obtained with SIMCA are
sometimes due to the presence of class inhomogeneities (45,
46). Moreover, numerous samples are required for each class
to be able to construct meaningful and representative PC models
(47).

PDA. Selecting nine PCs as the key number of factors in the
PCA of the training set, the results for all classes were FP)
FN ) 0.

Figure 5. Chromatogram of an Irish sample zooming at the region of analytical interest. The internal standard peak has a retention time of 27.4 min.

Table 1. Classification Performance of Different Pattern Recognition Tecniques According to the SENS and SPEC of the Evaluation Set

discrimination technique

3NN LDA SIMCA PDA MLP PNN

category sens. spec. sens. spec. sens. spec. sens. spec. sens. spec. sens. spec.

Scotch 1.00 1.00 0.92 1.00 0.67 0.70 1.00 1.00 1.00 1.00 1.00 1.00
Bourbon 1.00 1.00 1.00 0.94 0.82 0.77 1.00 1.00 1.00 1.00 1.00 1.00
Irish 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Discrimation of Whiskeys from GC/MS Congener Analysis J. Agric. Food Chem., Vol. 54, No. 6, 2006 1987



MLP. Initial weights are taken randomly within-0.1 and
0.1. The architecture was 12 input neurons (the chemical
descriptors), six hidden neurons (heuristically estimated to
minimize overfitting), and three output neurons (the three
classes). The learning rate and the momentum were fixed to
0.2 and 0.5, respectively. Target outputs were normalized to
0-1 and written in binary form: 100 (scotches), 010 (bourbons),
and 001 (Irish whiskeys). Both training and monitoring errors
decreased monotonically with the increasing number of iterations
up to 1000 epochs without overfitting. The results for all classes
were FP) FN ) 0.

PNN. In our case, we have 12 input neurons (one for any
chemical descriptor), 30 pattern neurons (14 for scotches, 11
for bourbons, and five for Irish whiskeys), three summation
neurons (the three classes), and one decision neuron (the class
winner). By adjusting the smooth factor toσ ) 0.047, we obtain
FP ) FN ) 0 for all classes.

The results of the different supervised pattern recognition
methods are presented inTable 1. As can be observed, KNN,
PDA, MLP, and PNN lead to the best results (SENS) 1 and
SPEC) 1), followed by LDA and last SIMCA, but for the
Irish class, FN) FP ) 0 always.

It is remarkable the excellent results obtained when applying
artificial neural networks either MLP or PNN. Because although
KNN and PDA also led to FP) FN ) 0 for every class, this
is only true if we chooseK ) 3 neighbors in KNN and if we
select nine PCs as latent dimensionality in PDA. Otherwise,
the occurrence of FP and FN begins. This fact may be due to
a nonlinear disposition of the class frontiers that only can be
suitably managed by neural networks.
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(25) Ståhle, L.; Wold, S. Partial least-squares analysis with cross-
validation for the two-class problem: A Monte Carlo study.J.
Chemom.1987,1, 185-196.

(26) Wold, S. Pattern recognition by means of disjoint principal
components models.Pattern Recognit.1976,8, 127-139.

(27) González-Arjona, D.; González, A. G. Adaptation of linear
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